
Mobile Apps
for Android

with MIT App Inventor 2

Fast visual development with
media, GPS and databases

International ICT Week
July 3-7, 2023

Objectives

Specific
Objectives

Knowing a tool for development of mobile applications, as
well as the basic techniques that close the system cycle

MIT App Inventor: Very fast learning curve, but robust
enough for real projects

Ideal for rapid application development without worrying so
much about code syntax (similar to Scratch)

Possibility of carrying out a professional appearance app in
the (limited) time that we have for this one week course

Possibility of distributing our apps through Google Play

Francisco Rovira Más
frovira@dmta.upv.es

Distribution of sessions
MIT App Inventor

Session 1
Platforms and development environments.
Justification of platform and environment
chosen. Presentation projects. Server
presenter. Introduction MIT App Inventor

Session 2
Programming with the Block Editor. Working with
several screens. Components Images, audio and
video. Camera. Sensors: GPS, accelerometer ...

Session 3
Storage. Local databases Connectivity.
Going further: Extensions.

Session 4
Working with servers: Webservices. Technology
needed to interact with server. Collecting and
storing information. Collection of basic scripts

Session 5
Representation of server information. Sharing data. Sharing on
social networks. Distribute our App. Publish our App on Google
Play.

Session 1
Introduction

Eduardo Blasco, July 2023

The fantastic potential
of today's Smartphones

• Powerful multi-core processors
• Large amount of RAM memory
• Huge storage capacity
• Photo camera (more than one)
• Always connected to internet
• Bluetooth connectivity, NFC, GSM, SMS
• Positioning: GPS, Galileo, Glonass, BeiDou
• Proximity sensors, inclination, gyroscope,

steps, barometric, temperature, light intensity,
microphone, magnetic fields, fingerprint
reader, barcode reader ...

• Speech recognition, flashlight ...

And always in continuous improvement

…and we carry with them 24h with us!

How far can we go?

With the support
of good web
services ...
As far as our
imagination goes!

Smartphones and Tablets
Platforms

• Google Android
• Apple iOS

*Fuente: Device Atlas. Visitar: https://deviceatlas.com/device-data/explorer/webusage/traffic

https://deviceatlas.com/device-data/explorer/webusage/traffic

Mobile development environments
•Native languages and tools from each platform:
1. Objective-C, Swift and XCode in iOS
2. Java and Android Studio in Android

•Multiplatform tools that can compile to native code.
Like Xamarin Studio or Flutter (from Google, Dart language)

•Multiplataform tools based on HTML5.
Like PhoneGap, React Native (RN), Ionic or Apache Cordova.

MIT App Inventor

Tool with which we will try to squeeze
all that potential

Let's see why that tool…

MIT: Massachusetts Institute of Technology

Margaret Hamilton with the pile of printed code
she wrote for the first mission that landed on the
Moon, Apollo 11.
https://github.com/chrislgarry/Apollo-11

60’s yearsApollo Guided Computer and the DSKY

Lunar module Apolo 11

https://github.com/chrislgarry/Apollo-11

MIT: Massachusetts Institute of Technology

Initially developed by
Professor Hal Abelson
and a Google Education
team, App Inventor runs
as a web service
managed by staff from
the MIT Center for
mobile learning, since
2010
MIT App Inventor’s source code:
https://github.com/mit-
cml/appinventor-sources

The same place, 50 years after

The processor of the on-board computer of Apollo 11 was 2MHz, with less than 40kB.

Compare it to your 2GHz onboard smartphone and 32GB, on average, and think what you can
not do with it ...

Official Google Research Blog (2009)
https://ai.googleblog.com/2009/07/
app-inventor-for-android.html

https://github.com/mit-cml/appinventor-sources
https://ai.googleblog.com/2009/07/app-inventor-for-android.html

Justification platform and
environment chosen

• Easy learning
• Blocky Concept
• Without having to type code in the usual way in programming

• Good Access to the Smartphone resources
• Almost every gadget at your fingertips

• The resulting applications are robust. It seems like a
children's game, but it is not.

• It is a tool for programming smartphones and
tablets on the cloud, just like Gmail is email on the cloud or Spotify is
music on the cloud.

Justification platform and
environment chosen

• Free and open-source* (https://github.com/mit-cml/appinventor-sources -

http://appinventor.mit.edu/appinventor-sources/) and with the possibility of
uploading our Apps to Google Play

• It’s a tool with the seal of Google and MIT

• All you need is a web browser and a Google account,
and for debugging, a physical mobile or a virtual emulator.

• It will allow us to be addressed in the short duration
of our course

*Released under dual licensing: a Creative Commons Attribution ShareAlike 3.0 Unported license, and an Apache License 2.0 for the source code.

https://github.com/mit-cml/appinventor-sources
https://github.com/mit-cml/appinventor-sources
http://appinventor.mit.edu/appinventor-sources/

Justification platform and
environment chosen

• Other advantages:
• Globally chosen as a basic learning tool for

student programming
• Great community of users
• Usual in "Hackathons“ or “Appathons”(this course could

be a kind of)

• Many "social" uses rewarded (citizen science)
• Finally, since 2021: Available for Apple iOS on the

App Store (http://appinventor.mit.edu/blogs/evan/2021/03/04-mit-app-inventor-ios-app-store)

http://appinventor.mit.edu/blogs/evan/2021/03/04-mit-app-inventor-ios-app-store

What includes and what not,
MIT App Inventor?

• Includes:
– App Inventor is a tool that includes (almost) all the sensors

/ elements / components / calls to processes available in
smartphones, and if it does not include them, they can be
included through the Extensions

• For example: to work with WiFi and networking (SSIDs, IPs, etc.)

• Exclude:
– To work in background, that is, when the App is not

running in the foreground (but can be running while screen is off)

– Push notifications (although it can be emulated with Firebase
notifications)

What are students expected to
complete in this course?

• Creation of an operational project in group:
– To choose among those offered by the professors: one of

them of immediate practical application
– Or one free to the taste of the student, with the

ingredients that will be indicated, using as many
smartphone resources as necessary

MIT App Inventor:
The complete ecosystem (1/2)

1) Web browser (recommended Chrome, IE not supported) opening
http://ai2.appinventor.mit.edu and using a Google account +
install the SW aiStarter on the PC

2) To test and debug we will need:
1) Or an Android physical device (Smartphone/Tablet)
2) Or an Android emulator on the PC

3) Browser-Android connection por debbuging,
using the tool MIT AI2 Companion (App)

1) With a USB Cable
(don’t forget DEGUB MODE)

2) With a WiFi connection (it’s the best option, not available in UPV)

http://ai2.appinventor.mit.edu/
http://appinv.us/aisetup_windows
https://developer.android.com/studio/run/emulator
https://play.google.com/store/apps/details?id=edu.mit.appinventor.aicompanion3

MIT App Inventor:
The complete ecosystem (2/2)

4) If we are going to work online:
– To send or receive information online, as well as to represent

the results captured by our App on the web, we will need a
server. We have one dedicated for this course:
https://ictw.agr.upv.es/

Services that we can use, with one account per
team:

– Apache Web Server with PHP
– MySQL database
– Storage space managed by FTP
– Basic Google Maps API scripts to use maps

https://ictw.agr.upv.es/

USB Debug Mode

File types in
App Inventor

• Because the file extension
– .apk is THE APP itself, ready to be installed,

opening it in the device (for example, passing it as
an attachment by email, hanging it on a web, or
uploading it to Google Play for distribution)

– .aia are the backup files of each project, to save a
copy or to share the "code" with other users

– .keystore is the file of digital private key used to
sign our projects, unique for each user, essential
when we publish on Google Play (keep a copy of it)

A quick look at what we will find when
working with App Inventor

Before starting to work with the browser, and
without going into detail, let's quickly see how
the different screens we will use looks like

Main Projects screen

Components of the Designer view

Components of the Block Editor view

Summary of resources
and tools to use

• App Inventor (AI2, preferably with Google Chrome browser)
• For debugging:

-Android emulator if necessary due to lack of physical device
• To connect the Smartphone with the web AI2 web

-On the mobile device: MIT AI2 Companion app (you must have the DEBUG MODE
active and the cable connected if you connect via USB)
-On the computer: aiStarter program

• To show my device in the projector I will use scrcpy
• Server of the course https://ictw.agr.upv.es (contains all the necessary resources)
• FTP to transfer files to the server (Filezilla)
• For the management of the database:

-PHPMyAdmin from http://ictw.agr.upv.es/phpmyadmin
• To access the server in console mode (advanced users only):

-PuTTY for SSH for Secure shell and telnet
• Basic PHP scripts that we can edit on the PC with:

-Notepad ++, Brackets ...
-And for web design Netbeans, Brackets ...

http://appinv.us/aisetup_windows
https://github.com/Genymobile/scrcpy
https://ictw.agr.upv.es/
http://ictw.agr.upv.es/phpmyadmin

Let’s do it!

Time to open your browser!
http://ai2.appinventor.mit.edu

and use a Google account to login

http://ai2.appinventor.mit.edu/

Identifying the elements
of App Inventor

• Projects
– My projects
– Start new project
– Import project (.aia) from my computer ...
– Import project (.aia) from a repository ...
– Delete Project
– Save project
– Save project as ...
– Checkpoint
– Export selected project (.aia) to my computer
– Export all projects
– Import keystore
– Export keystore
– Delete keystore

• Connect
– AI Companion
– Emulator
– USB
– Reset Connection
– Hard Reset

• Build
– App (provide QR code for .apk)
– App (save .apk to my computer)

• Help
– About
– Library
– Extensions
– Tutorials
– Troubleshooting
– Forums
– Report an Issue
– Companion Information
– Update the Companion
– Show Splash Screen

• My Projects
• Gallery
• Guide
• Report an Issue
• Language
• Current Google Account login

• Start new project…
• Delete Project
• Publish to Gallery

Identifying the elements on screen
inside a Project (Designer)

• Palette
• Viewer
• Components
• Non visible

components
• Media
• Properties of the

selected
component

Identifying the Palette elements

• They are this:
– User interface
– Layout
– Media
– Drawing and Animation
– Maps
– Sensors
– Social
– Storage
– Conectivity
– LEGO® MINDSTORMS®
– Experimental
– Extension

Identifying the Viewer elements

• Represents the app
screen:
– Even when very

similar, his aspect if
NOT DEFINITIVE,
because has some
help guides (green
guide marks)

Identifying the Components elements

• Arborescent hierarchical
structure :
– Shows all the elements integrated

on the app screen
– The PARENT element is Screen1,

because all the elements are
included on it, and if there are
several screens, the first one is
always "Screen1"

Identifying the Media elements

• They are the multimedia
files (Images, sounds…)
uploaded to the server
and available in App
Inventor
– We can upload more from

here, or delete them if they
were not necessary, in order
to reduce the weight of the
App

– They can also be uploaded
directly from the properties of
each components, and will
appear here

Identifying the Properties elements

• They are the properties of
the selected Component
– We also have the possibility

to modify these properties
at runtime, that is, in block
programming, not only
now, during the design

Identifying the screen elements inside a
Project (Blocks) (1/2)

This is the part where
we will establish the
programming itself,
the "code", only using
puzzle blocks that can
only fit with the
appropriate blocks

Identifying the screen elements inside a
Project (Blocks) (2/2)

Blocks (available elements to program):
each color is beacuse a funcion

• Built-in, the basic, grouped by:

• Control (programming structures)

• Logic
• Math
• Text
• Lists
• Colors
• Variables
• Procedures

• Own components
• Any component (affecting to all the

elements in the group)

Backpack: to save objects to be
reused later (permanent copy &
paste)

Control Blocks
• If then…

• For each number from ... to ... in increments of ... run ...

• For each item in the list ...

• While condition ... execute ...

• Yes ... then ... if not ...

• Run ... result ...

• Evaluate but ignore result ...

• Open another screen with name ...

• Open another screen with name ... with an initial value ...

• Take the initial value (from the screen that called us)

• Close screen

• Close screen with a value ... (it will be given to the other screen that called us)

• Close the application

• Take the initial text (from the appp that called us)

• Close screen with text ... (it will be given to the other application that called us)

Logic Blocks

• True (True value)

• False (False value)

• Not (denial of ...)

• = (comparison, returns True or False if equality is met

or not)

• Y (returns True if both elements are True "AND")

• O (returns True if any element is True "OR")

Math Blocks
Basic mathematical operations:
• Set a numeric value
• Logical value if both numbers are equal
• +, -, *, /, ^
• Random numbers (and their seed)

• Integer between ... and ...
• Random fraction (between 0 and 1)

• Minimum or maximum value
• Square root of
• Absolute value of | ... |
• Negative of ...
• Round out…
• Upper and lower integer of a decimal number
• Modulo of ... / ... (rest division)
• Sine, cosine, tangent, arctangent ...
• Conversion radians / degrees
• Convert to decimal with ... decimals
• Is it a number? (or it's text and another class)
• Base conversion (binary, decimal,

hexadecimal)

Text Blocks
Basic operations with text strings
• Set text string
• Join chains
• Length (chain length)
• It is empty? (if it has any value)
• Text comparison
• Trim (removes spaces in front and behind chain)
• Conversion to uppercase or lowercase
• Beginning of the text (position of one string within another)
• Contains text (checking the inclusion of one string in another)
• Split (cut out on any given character) /Split at any (given chain)
• Split text by spaces
• Text segment from position ... in ... characters
• Replacement of a chain ... in text ... with substitute ...
• Obfuscation of texts in the resulting .apk file (within the app it will

be the same as a text)
• Is a text string this ...?

Lists Blocks
Operations with elements of Lists (Vector concept):
• Create empty list
• Create list of n elements
• Add items to an existing list
• Search for item in list
• Number of items in a list
• Is the list empty?
• Extract item at random from a list
• Find element position in list (0 if not found)
• Select item number ... from the list
• Insert item in list at the specified position
• Substitution of element in a given position
• Remove the item from the given position
• Add all the elements of the list2 to the list1 (the 1

will happen to contain both, while the 2 will remain
unchanged)

• Copy list in another
• Is this a list ...?
• Convert list to record / CSV table (values separated

by comma)
• Convert record / CSV table to list
• Search for key pairs (returns the value associated

with the key in the list of partners

Dictionaries Blocks
Dictionaries, called in other languages terms such as maps, associative arrays or lists,
are data structures that associate one value, often called the key, with another value. A
common way of displaying dictionaries is using the JavaScript Object Notation (JSON),
for example:

{
"id": 1,
"name": "Tim the Beaver",
"school": {
"name": "Massachusetts Institute of Technology"

},
"enrolled": true,
"classes": ["6.001", "18.01", "8.01"]

}

The above example shows that in JSON the keys (quoted text before the :) can map to
different types of values. The allowed types are number, text, other dictionaries,
booleans, and lists. In the blocks language, you can bulid this dictionary as follows:

Figure 1: A blocks representation of the JSON code snippet shown above.

Colors Blocks
Basic color operations:
• Set a color to some of the color properties of some

component, for example, text color or background color
(there are more colors if we click on the color in
question)

• Create RGB color (red, green, blue and optionally alpha
channel for transparency). Three or four elements list.

• Separate RGB color (in a red, green, blue and alpha
channel list for transparency)

Variables Blocks
Operations with variables:

• Establishment of values (setters)

• Taking of values (getters)

• Globally (to the screen) or locally (to the block

or procedure)

• For global variables to the entire project, we

must have TinyBD, a kind of local database on

the application, which lasts over the time,

once the app is closed, and can be read from

different screens

Procedures Blocks

Creation of procedures, for when we have to repeat
assiduously a succession of actions, so we only create it
once and then we call it as many times as necessary:
• No result (proper procedure)
• With result (typical function concept)

Screen Blocks
Now we are going to observe that for a component
(like Screen, that is hierarchically the superior
element), a series of blocks of different colors
appear, in function of group to which they belong:
• Golden: Control of actions, events
• Green:

• Light green: getters (get property values)
• Dark green: setters (set or read values in properties)

• Purple: Calls to procedures

Palette Objects (1/3)

Palette Objects (2/3)

Palette Objects (3/3)

First activity

• Creation of our first "Hello World!" App, using
a Button object and another Label, so that
when you click on the button, the text "Hello
World!" Appears on the label, just to check
the cycle of:
1. Screen designer
2. Design of Blocks
3. Connect with the mobile device for debugging

Starting the activities

• We begin to explore the possibilities through
some "result" apps to start with, which will
surely hook you up and make you see how
easy it is to achieve important results with
little effort:
– Talk to Me

“Talk to Me”

Designer: Blocks:

“Parrot”

Designer: Blocks:

An application that listens to what you say and then… repeats it!

Important Concepts in App Inventor 2

• Publishing Apps to Google Play Store
• Understanding Local and Global Variables
• Using Lists
• Commands and Expressions
• Control Flow
• Arranging Components on the Screen
• Manipulating Component State: Getters and Setters
• Using Conditional Blocks
• Events and Event Handlers
• Using Multiple Screens in One App
• PseudoRandom Number Generator and Random Set Seed
• Data and Databases
• Using the Activity Starter to launch external apps like the phone's web browser
• Blocks with Dropdowns
• Working with Images and Sounds

http://appinventor.mit.edu/explore/ai2/google-play.html
http://appinventor.mit.edu/explore/ai2/support/concepts/variables.html
http://appinventor.mit.edu/explore/ai2/support/concepts/lists.html
http://appinventor.mit.edu/explore/ai2/concepts.html#CommandExpr
http://appinventor.mit.edu/explore/ai2/concepts.html#ControlFlow
http://appinventor.mit.edu/explore/ai2/concepts.html#Arrange
http://appinventor.mit.edu/explore/ai2/concepts.html#State
http://appinventor.mit.edu/explore/ai2/concepts.html#Conditionals
http://appinventor.mit.edu/explore/ai2/concepts.html#Events
http://appinventor.mit.edu/explore/ai2/concepts.html#Screens
http://appinventor.mit.edu/explore/ai2/concepts.html#Random
http://appinventor.mit.edu/explore/ai2/concepts.html#Database
http://appinventor.mit.edu/explore/ai2/activity-starter.html
http://appinventor.mit.edu/explore/ai2/concepts/dropdowns.html
http://appinventor.mit.edu/explore/ai2/concepts/images-and-sounds.html

Conclusions

Introduction
Session 1

We know the components, mechanisms and tools necessary to
operate the complete cycle (design and debugging) both from
the PC side and from the side of the Android mobile device

We will work with an absolutely valid tool for the real world,
and supported by the web services that a server provides us

The developed Apps are guaranteed by MIT and a long-term
commitment by the maintainer. Actually, they are starting to
support iOS

Credits:
• Wikipedia
• Web MIT App Inventor [Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)]

	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	The fantastic potential �of today's Smartphones
	How far can we go?
	Smartphones and Tablets �Platforms
	Mobile development environments
	MIT App Inventor
	MIT: Massachusetts Institute of Technology
	MIT: Massachusetts Institute of Technology
	Justification platform and environment chosen
	Justification platform and environment chosen
	Justification platform and environment chosen
	What includes and what not, �MIT App Inventor?
	What are students expected to complete in this course?
	MIT App Inventor: �The complete ecosystem (1/2)
	MIT App Inventor: �The complete ecosystem (2/2)
	USB Debug Mode
	File types in�App Inventor
	A quick look at what we will find when working with App Inventor
	Main Projects screen
	Components of the Designer view
	Components of the Block Editor view
	Summary of resources �and tools to use
	Let’s do it!
	Identifying the elements �of App Inventor
	Identifying the elements on screen �inside a Project (Designer)
	Identifying the Palette elements
	Identifying the Viewer elements
	Identifying the Components elements
	Identifying the Media elements
	Identifying the Properties elements
	Identifying the screen elements inside a Project (Blocks) (1/2)
	Identifying the screen elements inside a Project (Blocks) (2/2)
	Control Blocks
	Logic Blocks
	Math Blocks
	Text Blocks
	Lists Blocks
	Dictionaries Blocks
	Colors Blocks
	Variables Blocks
	Procedures Blocks
	Screen Blocks
	Palette Objects (1/3)
	Palette Objects (2/3)
	Palette Objects (3/3)
	First activity
	Starting the activities
	“Talk to Me”
	“Parrot”
	Important Concepts in App Inventor 2
	Número de diapositiva 54
	Número de diapositiva 55

